

HMU8-9570

HYBRID ENERGY CONTROLLER USER MANUAL

郑州众智科技股份有限公司 SMARTGEN(ZHENGZHOU)TECHNOLOGY CO.,LTD.

SmartGen众智 Chinese trademark

SmartGen English trademark

SmartGen – make your generator *smart* SmartGen Technology Co., Ltd. No.28 Jinsuo Road, Zhengzhou, Henan Province, China Tel: +86-371-67988888/67981888/67992951 +86-371-67981000(overseas) Fax: +86-371-67992952 Web: www.smartgen.com.cn/ www.smartgen.cn/ Email: sales@smartgen.cn

All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or other) without the written permission of the copyright holder.

Applications for the copyright holder's written permission to reproduce any part of this publication should be addressed to SmartGen Technology at the address above.

Any reference to trademarked product names used within this publication is owned by their respective companies.

SmartGen Technology reserves the right to change the contents of this document without prior notice.

Date	Version	Note
2021-10-09	1.0	Original release.
2022-06-11	1.1	Change manual logo.

Table 1 Software Version

Table 2 Symbol Instruction

Symbol	Instruction
A NOTE	Highlights an essential element of a procedure to ensure correctness.
A	Indicates a procedure or practice, which, if not strictly observed, could result in
CAUTION	damage or destruction of equipment.
	Indicates a procedure or practice, which could result in injury to personnel or loss of
WARNING	life if not followed correctly.

CONTENTS

1	0\	/ERVIEW	5
2	PE	ERFORMANCE AND CHARACTERISTICS	6
3	SF	PECIFICATION	8
4	OF	PERATION	9
	4.1	CONTROLLER PANEL	. 9
	4.2	DISPLAY INTERFACE AND OPERATION	10
	4.2	2.1 ILLUSTRATION	10
	4.2	2.2 HOMEPAGE INTERFACE	10
	4.2	2.3 PV INTERFACE	11
	4.2	2.4 PCS INTERFACE	11
	4.2	2.5 GENSET INTERFACE	12
	4.2	2.6 LOAD INTERFACE	12
	4.2	2.7 SETTING INTERFACE	13
	4.3	RUNNING MODE DESCRIPTION	14
	4.3	3.1 PCS + GENSET SYSTEM	14
	4.3	3.2 PV + PCS + GENSET SYSTEM	16
5	PF	ROTECTIONS	18
	5.1	WARNING ALARMS	18
	5.2	FAULT ALARMS	19
6	WI	IRING CONNECTION	19
7	SC	COPES AND DEFINITIONS OF PROGRAMMABLE PARAMETERS	21
8	SY	STEM STRUCTURE TOPOLOGY	24
9	RL	JNNING EXAMPLE	25
10	CC	OMMISSIONING	27
11	IN	STALLATION	28
	11.1	FIXING CLIPS	28
	11.2	CASE DIMENSION AND PANEL CUTOUT	28
12	FA	AULT FINDING	29

<u>HMU8-9570 Hybrid Energy Controller</u> is used for micro grid management system composed of solar energy, wind energy, energy storage battery and genset, which can monitor data via RS485 port. It can also control the start and stop of gensets in system according to load or storage battery SOC, and control output power by setting genset voltage, frequency center point and droop percentage. In addition, it has economy and power maintaining running modes.

HMU8-9570 Hybrid Energy Controller applies 8-inch 800*600 resolution capacitive touch screen with Chinese and English display. It is simple to operate and reliable to run.

HMU8-9570 Hybrid Energy Controller User Manual

2 PERFORMANCE AND CHARACTERISTICS

HUM8-9570 hybrid energy controller can be used for data monitoring and control of inverter, converter and genset, which is suitable for micro grid hybrid energy system composed of photovoltaic, storage energy and genset, also for hybrid energy system composed of storage energy and genset.

Main characteristics are as bellow:

- Display module adopts 8-inch LCD screen with 800x600 resolution, HMI display, capacitive touch screen operation. Optional Chinese and English interface can be chosen on site, making commissioning convenience for factory personnel;
- With power indicator, communication indicator and alarm indicator;
- The module has 10-level brightness, can be adjusted according to different environments;
- The homepage of display module can display PV current day power bar chart, current day charge/discharge curve diagram of energy storage battery, load power and accumulated energy pie chart;
- Display energy-saving and emission reduction parameters;
- Set genset frequency, voltage center point and droop percentage;
- Set RS485 communication port parameters on the module, which cannot be lost even in case of power outage. All module parameters can be adjusted through upper computer software via PC;
- Two running modes: economy and power maintaining;
- With 4 RS485 ports, 1 CANBUS port, 1 ETHERNET port;
- Displayed photovoltaic inverter parameters:

Table 3 Photovoltaic Inverter Parameters

Name	Unit	Name	Unit
PV Working Status	/	PV Output Active Power	kW
PV Today Accumulated Generating Power	kWh	PV Output Reactive Power	kvar
PV Accumulated	kWh	PV Output Frequency	Hz
PV Input Voltage	V	PV Phase Voltage	V
PV Input Current	А	PV 3-phase Current	А
PV Input Power	kW	PV Power Factor	/

Displayed converter parameters:

Table 4 Converter Parameters

Name	Unit	Name	Unit
Working Mode	/	Reactive Power	kvar
Working Status	/	Battery Status	/
Daily Grid-connected Run Time	min	Daily Charge	kWh
Total Grid-connected Run Time	h	Daily Discharge	kWh

Name Unit Name Unit **Battery Voltage** V **Total Charge** kWh kWh **Battery Current** А **Total Discharge** kW Battery Power **Daily Battery Charge Time** min Power Grid Frequency Hz **Daily Battery Discharge Time** min ٧ Line Voltage **Total Battery Charge Time** h **Total Battery Discharge Time** h 3-phase Current А Power Factor / **Battery SOC** % Active Power kW

Displayed genset parameters:

Table 5 Genset Parameters

Name	Unit	Name	Unit
Genset Mode	/	Each Phase Active Power	kW
Genset Working Status	/	Total Active	kW
Genset Accumulated Run Time	min	Each Phase Reactive Power	kvar
Genset Today Generating Power kWł		Total Reactive Power	kvar
Genset Total Generating Power kWh		Each Phase Apparent Power	kVA
Gen 3-phase Phase Voltage	V	Each Phase Power Factor	/
Gen 3-phase Line Voltage	V	Average Power Factor	/
Gen Frequency	Hz	Fuel Level	%

 Wide power supply range DC(10~35)V, suitable for different starting battery voltage environment;

— USB equipment port for upgrading display module firmware;

USB master port for upgrading screen picture and word stock of display module;

 IP65 waterproof level is achieved with the help of rubber-ring gasket between shell and control panel;

- Controller is fixed by metal clips;
- Modular structure design, pluggable terminal, built-in mounting, compact structure with easy installation.

3 SPECIFICATION

Table 6 Technical Specification

Parameter	Details						
Working Voltage	Range: DC10V~DC35V, DC reverse connection protection						
Overall Consumption	<6W						
DC/05	Isolated, half-duplex, 9600/19200/38400/57600/115200bps baud						
K3405	rate, maximum communication length 1000m (under 9600bps).						
Ethernet	elf-adapting 10/100Mbit						
	Isolated, maximum communication length 250m; USE Belden 9841						
	cable or equivalence.						
	5-8Hz: ±7.5mm						
Vibration Test	8-500Hz: 2g						
	IEC 60068-2-6						
	50g, 11ms, half-sine, complete shock test from three directions, and						
Shock Test	18 times shock for each test						
	IEC 60068-2-27						
Rump Tost	25g, 16ms, half-sine						
	IEC 60255-21-2						
Case Dimensions	221mm x 163mm x 51mm						
Panel Cutout	205mm x 147mm						
Working Temperature	(-25~+70)°C						
Working Humidity	(20~93)%RH						
Storage Temperature	(-30~+80)°C						
	Front Enclosure: IP65 when rubber-ring gasket is installed between						
Protection Level	the enclosure and the control panel						
	Rear Enclosure: IP20						
Weight	1.3kg						

4 OPERATION

4.1 CONTROLLER PANEL

Fig.1 HMU8-9570 Indication

Table 7 Indicators Description

Indicator	Description				
	Warning alarm: slow flashes (1 time/s);				
Alarm Indicator	Fault alarm: fast flashes (5 times/s);				
	No alarm: extinguishes.				
	It always illuminates when controller communicates with inverter,				
Comm. Indicator	converter, genset normally;				
	It extinguishes when communication is abnormal.				
Dower Indicator	It always illuminates after controller is powered on and working;				
	It extinguishes after controller stops working.				

ANOTE: Mute the sounds by sliding touch screen.

4.2 DISPLAY INTERFACE AND OPERATION

4.2.1 ILLUSTRATION

The controller has 6 interfaces, including homepage, photovoltaic, PCS, genset, load and setting. The interface can be switched by sliding the touch screen.

4.2.2 HOMEPAGE INTERFACE

Fig.2 Homepage Interface

This interface displays some parameter information of photovoltaic, energy storage battery, genset, load, energy saving and emission reduction. When photovoltaic inverter, energy storage converter and genset have alarm information, alarm information will be displayed in corresponding title bar.

III PV	
PV Work Status Standby : intializa PV Today Acc. Energy 0 kWh PV Acc. Energy 0 kW PV Input1#Volt 0.0 V PV Input1#Current 0.00 A PV Input2#Volt 0.0 V PV Input2#Current 0.00 A PV Input2#Current 0.00 KW PV Output kW 0.00 kW	PV C-phase Current 0.00 A PV Output PF 0.00
PV Output kvar0.00kvarPV Output Freq0.00HzPV A-phase Volt0.0VPV A-phase Current0.00APV B-phase Volt0.0VPV B-phase Current0.00APV C-phase Volt0.0V	
•	• • • •

Fig.3 PV Interface

This interface displays working status of photovoltaic inverter, accumulated generating power, input DC voltage, current, output AC voltage, current information.

4.2.4 PCS INTERFACE

PCS			
Work Mode VSG		Reactive Power	0.0 kvar
Work Status Initial Standb	У	Battery Status	Charging
Daily Grid-connected Run 0	min	Reactive Power	0.0 kWh
Total Grid-connected Run 0	h	Battery Status	0 kWh
Battery Volt 0.0	V	Reactive Power	0.0 kWh
Battery Current 0.0	A	Battery Status	0 kWh
Battery Power 0.0	kW	Reactive Power	0.0 min
Grid Freq 0.00	Hz	Battery Status	0 min
A-B Line Volt 0.0	V	Reactive Power	0.0 h
B-C Line Volt 0.0	v	Battery Status	0 h
C-A Line Volt 0.0	v	Reactive Power	0.0 %
A-phase Current 0.0	A	Battery Status	0 %
B-phase Current 0	А		
C-phase Current 0	A		
Power Factor 0			
Active Power 0	kW		
	• • •		

Fig.4 PCS Interface

This interface displays converter working mode, working status, running time, battery pack information, output AC voltage, current, power, etc.

4.2.5 GENSET INTERFACE

🚵 GEN		
Mode Stop	A-phase Reactive Power 0.0 kvar	
Work Status Standby	B-phase Reactive Power 0.0 kvar	
Acc. Run Time0:0	C-phase Reactive Power 0.0 kvar	
Today Energy0.0 kWh	Total Reactive Power0.0 kvar	
Total Acc. Energy 0.0 kWh	A-phase Apparent Power 0.0 kVA	
Gen UAB 0.0 V	B-phase Apparent Power 0 kVA	
Gen UBC 0.0 V	C-phase Apparent Power 0.0 kVA	
Gen UCA 0.00 V	Total Apparent Power 0 kVA	
Gen UA 0.0 V	A-phase Power Factor 0.0	
Gen UB 0.0 V	B-phase Power Factor 0	
Gen UC 0.0 V	C-phase Power Factor 0.0	
Gen Freq 0.0 Hz	Average Power Factor 0	
A-phase Active Power 0 kW	Fuel Level 0 %	
B-phase Active Power 0 kW		
C-phase Active Power 0 kW		
Total Active Power 0 kW		

Fig.5 Genset Interface

This interface displays genset controller mode, working status, running time, generating power, output AC voltage, current, power, etc.

4.2.6 LOAD INTERFACE

🕂 LOAD						
Application Mode	conomy					
Today Eletricity	0	kWh				
Load Total Active Power	0:0	kW				
PV Active PCT	0.0	%				
Storage Active PCT	0.0	%				
Genset Active PCT	0.0	%				
Total Acc. Energy	0.0	kWh				
Trees	0.00	1				
Co ₂ Emission	0.0	kg				
Save Coal	0.0	kg				
Economic Income	0.0	yuan				
			•	•		

Fig.6 Load Interface

This interface displays system application model, power consumption, energy saving and emission reduction, etc.

4.2.7 SETTING INTERFACE

🗘 Setting		
RS485-1	Inverter	Parameters
Baud Rate: 9600bit/s 🔻	′ Comm. Port Disable ▼	Freq Center Point 50.0 Hz
Parity: None 🔻	Comm. ID 002	Active Droop 002.0 %
Stop Bit: 2-bit 🔻	Converter	Volt Center Point 00230 V
RS485-2	Comm. Port Disable 🔻	Reactive Droop 002.0 %
Baud Rate: 9600bit/s 🔻	Comm. ID 001	Read Write
Parity: None 🔻	Genset	
Stop Bit: 2-bit 🔻	′ Comm. Port Disable ▼	
RS485-3	Comm. ID 003	
Baud Rate: 9600bit/s 🔻		
Parity: None 🔻		
Stop Bit: 2-bit 🔻		HMU8-9570
RS485-4		SW 1.0
Baud Rate: 9600bit/s 🔻		HW 1.2
Parity: None 🔻		Issue Date 2021-09-14
Stop Bit: 2-bit	Read Write	2021-10-22 15:58:20
		•

Fig.7 Setting Interface

Table 8 Key Description

lcon	Key	Description					
	Parameter Setting	Press it, accumulated information can be cleared by inputting password.					
字	Language	Press it can set display module language as Chinese or English.					
Θ	Date and Time	Press it can set module date and time.					
ġ.	Brightness	Press it can adjust module screen brightness and make lamp test, time is 2s.					
Numeric Keypad		When the parameter needs to be changed, press it can pop up numeric keypad.					

Controller parameter setting steps:

- 1) Select parameter items need to be configured;
- 2) Parameters with parameter list boxes selects corresponding configurations by clicking the list;
- 3) If you want to change the parameter of text box, please press the numeric keypad to pop up it;
- 4) Click "Write" button, parameter save dialog box will pop up, then save parameters according to hints.

ANOTE: Controller password needs to be inputted when configuring parameters, then you can save parameters.

4.3 RUNNING MODE DESCRIPTION

4.3.1 PCS + GENSET SYSTEM

PCS supplies power for load in VSG (Virtual Synchronous Genset) mode. When storage loading power is greater than start power of scheduled genset or battery pack SOC is lower than cutoff discharge SOC, genset will start. If genset and storage battery pack share the load, when load power is lower than allowed storage charge power, genset will charge the battery pack with constant voltage and frequency of storage rated charge power. When battery pack SOC is greater than cutoff charge SOC, genset will not charge for battery pack, genset and storage battery pack share the load (**NOTE**: Converter droop and genset droop should be set as same). When load power is lower than stop power of scheduled genset, genset will stop.

HMU8-9570 Hybrid Energy Controller User Manual

Fig.8 PCS + Genset Running Flowchart

4.3.2 PV + PCS + GENSET SYSTEM

ECONOMY MODE

If solar energy and storage energy supply power for load, when storage power is greater than start power of scheduled genset or battery pack SOC is lower than cutoff discharge SOC, genset will start. If PV outputs with max power, converter and genset share left load, when load power is lower than PV output power, PV output power is limited, genset reverse power is prevented and storage battery pack overcharge is prohibited. The solar energy takes load first, only supplies power for storage battery pack when solar energy is sufficient. When load power is lower than stop power of scheduled genset and battery pack SOC is greater than cutoff charge SOC, genset will stop.

Fig.9 Economy Mode Running Flowchart

• POWER MAINTAINING MODE

If solar energy and storage energy supply power for load, when storage power is greater than start power of scheduled genset or battery pack SOC is lower than cutoff discharge SOC, genset will start. If PV outputs with max power, storage converter and genset share load, when load power is lower than storage allowed charge power, genset will charge the storage battery pack with constant voltage and frequency of storage rated charge power; otherwise, when load power is greater than PV power, PV outputs with max power, genset and storage share left load. When load power is lower than Storage battery pack overcharge is prohibited. When load power is prevented and storage battery pack overcharge is prohibited. When load power is lower than storage battery pack overcharge is prohibited. When load power is lower than storage battery pack overcharge is prohibited. When load power is lower than stop power of scheduled genset and battery pack SOC is greater than cutoff charge SOC, genset will stop.

Fig.10 Power Maintaining Mode Running Flowchart

5 PROTECTIONS

5.1 WARNING ALARMS

When controller detects the warning alarm, it only issues warning.

Table 9 Warning Alarms

No.	Туре	Description			
1	PV Comm. Failure	When inverter communication port is enabled and action type selects "Warning", if controller cannot receive inverter communication data, it will send a warning alarm signal			
2	Converter Comm. Failure	When converter communication port is enabled and action type selects "Warning", if controller cannot receive converter communication data, it will send a warning alarm signal.			
3	Genset Comm. Failure	When genset communication port is enabled and action type selects "Warning", if controller cannot receive genset communication data, it will send a warning alarm signal.			
4	PV Common Warning	When controller receives inverter common warning alarm data, it will send a warning alarm signal.			
5	Converter Common Warning	When controller receives converter common warning alarm data, it will send a warning alarm signal.			
6	Genset Common Warning	When controller receives genset common warning alarm data, it will send a warning alarm signal.			

5.2 FAULT ALARMS

SmartGen

When controller detects fault alarms, it will send fault alarm.

Table 10 Fault Alarms

No.	Туре	Description
		When inverter communication port is enabled and action type
1	PV Comm. Failure	selects "Fault", if controller cannot receive inverter communication
		data, it will send a fault alarm signal.
	Converter Comm	When converter communication port is enabled and action type
2	Converter Comm.	selects "Fault", if controller cannot receive converter
		communication data, it will send a fault alarm signal.
		When genset communication port is enabled and action type
3	Genset Comm. Failure	selects "Fault", if controller cannot receive genset communication
		data, it will send a fault alarm signal.
1	DV Common Fault	When controller receives inverter common fault alarm data, it will
4	F V Common Fault	send a fault alarm signal.
5	Converter Common	When controller receives converter common fault alarm data, it will
5	Fault	send a fault alarm signal.
6	Consot Common Shut	When controller receives genset common shutdown alarm data, it
O		will send a fault alarm signal.

ANOTE: When controller receives common alarm common shutdown alarm, common warning alarm, common trip and stop alarm, common trip alarm, common safety trip and stop alarm, common safety trip alarm, common block alarm, corresponding common alarm information will be displayed on current homepage genset information bar.

6 WIRING CONNECTION

Fig. 11 Controller Rear Panel

Table 15 Terminal Connection Description

No.	. Function		Size	Remark	
1	В-		1.0mm ²	Connect starting battery negative.	
2	В+		1.0mm ²	Connect starting battery positive.	
3	PE			Protection earth.	
4	CAN	Terminal Matching Resistor (120Ω)	0.5mm ²	Reserved port. 120Ω twisted shielding line is recommended to use with its single end grounded. Short connect terminal	
6	-		0.5mm ²	4 and 6, then connect 120Ω terminal resistor.	
7	-		0.511111	Protection earth	
/		Terminal			
8	DC405 1	Matching Resistor (120Ω)	0.5mm ²	120Ω twisted shielding line is recommended to use with its single end grounded. Short connect terminal	
9	K340J-1	B(-)	0.5mm ²	8 and 10, then connect 120Ω terminal resistor.	
10		A(+)	0.5mm ²		
11		PE2		Protection earth.	
12 13	RS485-2	Terminal Matching Resistor (120Ω) B(-)	0.5mm ² 0.5mm ²	120Ω twisted shielding line is recommended to use with its single end grounded. Short connect terminal 12 and 14, then connect 120Ω terminal resistor.	
14		A(+)	0.5mm ²		
15		PE3		Protection earth.	
16	RS485-3	Terminal Matching Resistor (120Ω)	0.5mm ²	120Ω twisted shielding line is recommended to use with its single end grounded. Short connect terminal	
17		B(-)	0.5mm ²	16 and 18, then connect 120Ω terminal resistor.	
18		A(+)	0.5mm ²		
19		PE4		Protection earth.	
20		Terminal Matching Resistor (120Ω)	0.5mm ²	120Ω twisted shielding line is recommended to use with its single end grounded. Short connect terminal	
21	KS482-4	B(-)	0.5mm ²	20 and 22, then connect 120Ω terminal resistor.	
22	1	A(+)	0.5mm ²]	
23	1	PE5		Protection earth.	

ANOTE1: Slave USB port on the controller side is used for upgrading controller firmware.

ANOTE2: Master USB port on the controller side is used for updating controller display pictures and word stock.

ANOTE3: ETHERNET port on the controller side is reserved port.

7 SCOPES AND DEFINITIONS OF PROGRAMMABLE PARAMETERS

No.	o. Item		Range	Default	Description	
Time	Timer Setting					
1	Start Delay		(0-3600)s	1	Time from storage battery SOC is lower than cutoff discharge SOC or load power is greater than scheduled start percentage to genset start.	
2	Stop Delay		(0-3600)s	1	Time from storage battery SOC is greater than cutoff charge SOC or load power is lower than scheduled stop percentage to genset stop.	
Mod	ule Setting					
1	Module Add	ress	(1-254)	1		
2	Language		(0-1)	0	0: Simplified Chinese; 1: English	
3	Password		(0-65535)	00318		
4	DO 405 1	Baud Rate	(0-2)	1	0: 4800bps; 1: 9600bps; 2: 19200bps	
5	RS485-1	Parity	(0-2)	0	0: None; 1: Odd Parity; 2: Even Parity	
6		Stop Bit	(0-1)	0	0: 2bit; 1: 1bit	
7	DC 405 0	Baud Rate	(0-2)	1	0: 4800bps; 1: 9600bps; 2: 19200bps	
8	K5460-Z	Parity	(0-2)	0	0: None; 1: Odd Parity; 2: Even Parity	
9		Stop Bit	(0-1)	0	0: 2bit; 1: 1bit	
10	D0405.0	Baud Rate	(0-2)	1	0: 4800bps; 1: 9600bps; 2: 19200bps	
11	RS485-3	Parity	(0-2)	0	0: None; 1: Odd Parity; 2: Even Parity	
12		Stop Bit	(0-1)	0	0: 2bit; 1: 1bit	
13		Baud Rate	(0-2)	1	0: 4800bps; 1: 9600bps; 2: 19200bps	
14	K5485-4	Parity	(0-2)	0	0: None; 1: Odd Parity; 2: Even Parity	
15		Stop Bit	(0-1)	0	0: 2bit; 1: 1bit	
Syste	System Setting					
System Application						
1	1 Application Mode		(0-1)	0	0: Economy Mode; 1: Power Maintaining Mode.	
Converter Setting						
1	1 Rated Active Power		(0-6000)kW	500	PCS rated active power.	
2	Rated React	ive Power	(0-6000)kvar	500	PCS rated reactive power.	
3	Converter M	odel	(0-49)	0	0: SC50HV	
4	4 Communication ID		(1-254)	1	Converter communication address.	

Table 12 Parameter Contents and Scopes

No.	ltem	Range	Default	Description		
				Delay time from the module cannot		
Б	Comm Epiluro Dolov	(0.2600)	Б	receive monitoring data to controller		
5	Comm. Failure Delay	(0-3000)\$	5	issues communication failure alarm		
				during communication.		
6	Comm. Failure Action	(0-2)	1	0: None; 1: Warning; 2: Fault alarm.		
				0: Not used		
				1: RS485(1)		
7	Communication Port	(0-4)	0	2: RS485(2)		
				3: RS485(3)		
				4: RS485(4)		
8	Storage Charge	(0-100)%	50	Storage battery charge power.		
	Power	(0.100)/0				
9	Cutoff Discharge SOC	(0-100)%	30	When storage battery SOC is lower than		
				cutoff discharge SOC, genset will start.		
				When storage battery SOC is greater than		
10	Cutoff Charge SOC	(0-100)%	100	cutoff charge SOC, storage battery pack		
				charge is over.		
Inver	ter Setting	1				
1	Rated Active Power	(0-6000)kW	500	Rated active power of inverter.		
2	Rated Reactive Power	(0-6000)kvar	500	Rated reactive power of inverter.		
3	Inverter Model	(0-50)	0	0: First Running.		
4	Inverter ID	(1-254)	2	Inverter communication address.		
				Delay time from the module cannot		
5	Comm Failure Delay	(0-3600)s	5	receive monitoring data to controller		
Ŭ	commit runare being	(0 0000)0	Ŭ	issues communication failure alarm		
				during communication.		
6	Comm. Failure Action	(0-2)	1	0: None; 1: Warning; 2: Fault alarm.		
				0: Not used		
				1: RS485(1)		
7	Communication Port	(0-4)	0	2: RS485(2)		
				3: RS485(3)		
				4: RS485(4)		
8	DC Channel	(1-4)	2	DC input channel of PV inverter.		
Gens	Genset Setting					
1	Rated Active Power	(0-6000)kW	500	Rated active power of genset.		
2	Rated Reactive Power	(0-6000)kvar	500	Rated reactive power of genset.		
3	Genset ID	(1-254)	3	Genset communication address.		
				Delay time from the module cannot		
л	Comm. Failure Delay	(0-3600)s	5	receive monitoring data to controller		
4				issues communication failure alarm		
				during communication.		
5	Comm. Failure Action	(0-2)	1	0: None; 1: Warning; 2: Fault alarm.		

No.	ltem	Range	Default	Description		
6	Communication Port	(0-4)	0	0: Not used 1: RS485(1) 2: RS485(2) 3: RS485(3) 4: RS485(4)		
7	Scheduled Stop Power	(0-100)%	30	When storage capacity is greater than cutoff charge SOC and load power is lower than this value, schedule genset to stop.		
8	Scheduled Start Power	(0-100)%	80	When storage load power is greater than this value, schedule genset to start.		
9	Freq. Center Point	(10.0-75.0) Hz	50.0	Droop frequency center point of genset active power.		
10	Active Droop	(0-200.0)%	2.0	Genset active droop percentage.		
11	Volt Center Point	(30-30000)V	230	Droop frequency center point of genset reactive power.		
12	Reactive Droop	(0-200.0)%	2.0	Genset reactive droop percentage.		
13	Min. Load Power	(0-100)%	10	Genset allowed min. load power.		
14	Allowed Storage Charge Power	(0-100)%	80	When load power is lower than allowed storage charge power, it will charge for battery pack.		
Energy Saving and Emission Reduction Setting						
1	Equivalent Tree Plant Factor	(0-9.9999)	5.023 g/day	The average daily amount of CO_2 absorbed by an ordinary tree.		
2	Reduce C0 ₂ Factor	(0-9.9999)	0.785 kWh/kg	CO ₂ emission reduction amount for every 1kWh generated by PV.		
3	Save Standard Coal Factor	(0-9.9999)	0.123 kg	The standard coal amount required for every 1kWh power.		
4	Equivalent Economic Factor	(0-9.9999)	0.700 yuan/kWh	Price of 1kWh power.		

8 SYSTEM STRUCTURE TOPOLOGY

Fig.12 System Structure Topology

HMU8-9570 can perform data monitoring and communication with PV inverter, genset and converter via RS485 port. BMS and PCS can make data communication via RS485.

9 RUNNING EXAMPLE

SmartGen

Table 13 System Running Example

10 COMMISSIONING

Before formal running, please make the following checking:

- 1) Check whether all connection wires are correct and diameter is suitable;
- 2) Check whether DC power has fuse, connect it to power's positive and negative, turn on the supply switch;
- 3) Check whether battery pack and storage converter is correctly connected, then turn on the master switch of battery pack, press "Start" key;
- 4) Turn on the DC input switch and AC output switch of storage converter, set converter as VSG mode, start the converter through converter operation software and wait for normal running;
- 5) Turn off the PV inverter and grid switch, turn on the inverter DC switch and wait PV inverter enter normal running;
- 6) Set HES9570 genset controller in auto mode;
- 7) View whether each monitoring parameter of controller is normal;
- 8) View system running conditions with load;
- 9) If there is any question, please contact our service personnel in time.

11 INSTALLATION

11.1 FIXING CLIPS

- This controller is panel-mounted and fixed by clips;
- Withdraw the fixing clip screw (turn anticlockwise) until it reaches proper position;
- Pull the fixing clip backwards (towards the back of the module) and ensure four clips are inside their allotted slots;
- Turn the fixing clip screws clockwise until they are fixed on the panel;
- Care should be taken not to over tighten the screws of fixing clips, torque is 2.75kgf.cm (0.27N.m).

11.2 CASE DIMENSION AND PANEL CUTOUT

Fig.13 Case Dimension and Panel Cutout

12 FAULT FINDING

Table 14 Fault Finding

Symptoms	Possible Solutions		
Controllor no roononno for	Check starting voltage;		
controller no response for	Check controller connection wires;		
power	Check DC fuse.		
	Check connection wires;		
PV inverter comm. abnormal	Check settings of COM port is correct or not;		
Converter comm. abnormal	Check RS485's A and B connections is reversely connected or not;		
Genset comm. abnormal	Check 120 Ω terminal resistor of communication line is matched or		
	not.		